
Sprite Generation 
CS 534 - Fall 2018 -Term Project Proposal 

 
Instructor: Mohit Gupta - University of Wisconsin Madison  

Date: October 31, 2018 

Authors: 

● Curt Henrichs - ​cdhenrichs@wisc.edu​ - 9070390126  

● Sayem Wani - ​swani@wisc.edu​ - 9080301972  

● Saheen Feroz - ​sferoz@wisc.edu​ - 9080316251 

Website: ​https://uwmadison-cs534-term-project-f2018-cdh.github.io/ 

 
 

Problem 
Developing visual content for games, even simplified 2D games, proves to be a hurdle for indie 
studios and solo game developers who have neither the time nor capital to develop captivating 
environments, engaging character designs, and remarkable particle effects. So these 
developers turn to procedural algorithms to assist them in this endeavour. Current, general-use 
algorithms either iterate over the equivalent of building blocks to construct sprites that lack the 
detail of a hand-crafted image or explore a crafted algorithm using a pseudo-random seed [1]. 
Alternatively a developer can develop a deep neural network, such as a generative-adversarial 
network, to produce novel sprites for their game [2]. However, a neural network is not a 
panacea; it requires a large dataset of images. Additionally, the developer must rely on the 
network converging to a optimal weight space while simultaneously not overfitting. 
 

Solution Proposed 
Our solution takes significant inspiration from Lewis Horsley’s and Diego Perez-Liebana’s 2017 
paper titled ​Building an Automatic Sprite Generator with Deep Convolutional Generative 
Adversarial Networks ​[2]. The rational to use a GAN over hand-crafting would be to generate 
sprites without much human intervention after model training. Note further refinement and 
animation would still need to be done to tailor these sprites for the specific game. As a future 
step the sprite pipeline may include animation generation [5]. Our motivation partially drawn 
from personal experience where the problem with making games comes down to doing the art 
and partially inspired from literature [1].  
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One valid critique of the GAN method is the sprite’s art style. That is the sprite will be a 
combination of features from the dataset the network was trained on and thus may not have 
consistent artistic qualities. Our solution will handle this in two parts. First, the dataset will be 
curated with a rough theme in mind, something analogous to a game studio’s genre. Second, 
themes will be taught into an autoencoder as it can be thought of as a pre-trained style domain 
that learned the visual metaphor for sprite generation in its decoder.  

Model Architecture 
Our solution will first train an autoencoder, then flip the encoder, decoder using the hidden 
central feature structure as both input and output, see Figure 1. After this we will hold the 
autoencoder’s weights constant while training a generator and discriminator. Meaning the GAN 
only needs to learn what features to select and discriminate on instead of having to learn the 
entire space. Note a possible limitation of our solution is a potential for loss in novelty with the 
worst case being mode collapse [6].  

 
Figure 1: High-level network design with autoencoder. 

 
Drawing on Lewis Horsley’s and Diego Perez-Liebana’s paper [2], we will use a similar DCGAN 
[4] model including their use of strided convolution in lieu of maxpooling and fractional strided 
convolution instead of upsampling and we will implement batch normalization. Additionally, we 
are making the following changes, 
 

1. Our network will generate images of 32x32 pixel images. 
2. We will adjust the hyperparameters such as learning rate and network structure to get 

best possible results from our dataset. 



3. We will perform pretraining of the generator model through autoencoders. Our network 
will use successive decoders from result back trained through the normal unsupervised 
process. This should populate the weight with a better chance of generalizing from input. 
A potential drawback will be lack of novelty in output images if the autoencoder overfits 
during training. 

4. After obtaining results for autoencoder we will develop a conditional GAN. This means 
that there are labeled inputs into generator and discriminator to provide more control 
than just a random input vector [3]. Providing this supplemental data provides the 
network with input structure which should lead to better image generation. The challenge 
will be in constructing a dataset with granular labels. 

Comparison Architecture 
For comparison we will develop a standard DCGAN that closely follow Horsley’s and 
Perez-Liebana’s architecture. without the autoencoder and labeling.This network will still have 
hyperparameters adjusted to produce best possible output given the limitation on time. 

Datasets 
Regarding the dataset, we will be collecting sprites from open source resources, specifically 
OpenGameArt.org. This should provide enough data for an initial system. If necessary we can 
perform simple manipulations such as changing the color palette and single-pixel manipulations. 
Finally, if we need more data than what can be collected online and with time permitting, we will 
employ neural style transfer on our current sprite. Our team recognizes the largest risk to the 
success of the project is collecting enough quality data for our network to generalize. Our 
models will be trained on constrained topics as subsets of items, entities, and environment. 
While this will reduce our training set it will also reduce the variance thereby reducing cases to 
learn. 
 
All sprite data will be filtered to only include sprites of 32x32 pixels, some sprites may be 
cropped or padded (note sprites that when manipulated, lose the original meaning such as 
terrain, will be discarded). Sprites themselves may either originate from a sprite-sheet where 
they are extracted or may already be provided individually. The sprite is then normalized to a 
four channel image (RGBA) before being manually classified in a hierarchy. In the future a 
classification neural network could be developed for sorting but that is outside the scope of our 
project. Finally, we package the sorted image data as serialized Numpy arrays along with labels 
generated from the hierarchical structure due to sorting. 
 
 
 



Development and Training 
We are using Keras to develop both our architecture and the comparison architecture. Keras 
was chosen due to the ease of use in leveraging Tensorflow and that it is a Python library. For 
each subset of images, the class of interest, we will train a new variant of the network. 
Regarding training we chose Google Colab as it provides free GPU access for a Jupyter 
notebook. 
 

Performance Evaluation 
In order to gauge the performance of our network we need some way to codify the subjective 
quality of a sprite. We are presenting the following subjective sprite quality metric, 

1. Collect a random sample of 50 sprites 
2. For each human rater, 

a. Determine if sprite is qualitatively acceptable, considering 
i. Coherence 
ii. Satisfaction 
iii. Usable 

b. Count number of acceptable sprites 
3. Take average of raters to produce final quality metric 

This metric can then be used to gauge the relative difference between the comparison 
architecture and our solution. 

Current Progress 
In the following sections we will cover our development process starting with the GAN created to 
generate handwritten digits, to a GAN to generate environment sprites, and finally, a GAN that 
generates weapon sprites. Note that the GAN created for this milestone is an inprogress version 
of our comparison architecture. In addition to what was shown, we also developed an 
autoencoder on the MNIST dataset to learn Keras. We plan on working off that implementation 
for our architecture. 
 
 
 
 
 
 
 
 
 
 



GAN - MNIST Handwritten Digits 
As a proof of concept while collecting our sprite dataset we developed a GAN to generate 
handwritten digits. Figure 2 displays several digits generated from the trained network. These 
results were generated after training the network for 20 epochs using the full MNIST dataset. 
 

 
Figure 2: MNIST handwritten digits generated by GAN. 

 
 
 



GAN - Environmental Sprites 
Using an exploratory GAN based off the model architecture developed for the MNIST problem, 
we trained a network that generated terrain tiles, Figure 3. Our network was trained for 
approximately 2000 epochs to achieve these results. Most interesting sprites are the various 
block patterns that emerge as a feature. Note that some of the artifacts are exaggerated due to 
the sprites being scaled, however there is still much work to be done in generating valid sprites. 
 

 
Figure 3: Environment sprites generated with the network created. Note that some of the 

blurring artifacts are generated due to scaling the 32x32 pixels. 



GAN - Items Sprites 
Using a similar network structure to the model that generated environmental sprites, we trained 
a GAN that could generate items, specifically our largest subset was various weapons like 
swords, staffs, maces, etc. Figure 4, shows what our network learned at approximately 500 
epochs. A thousand epochs later, the results are shown in Figure 5. In both cases the network 
has difficulty learning the relevant details but has a general understanding of shape and 
shadow. 
 

 
Figure 4: Weapon sprites generated with GAN. Note results are poor but understandable. 



 
Figure 5: Results generated after further training of model. Improvement shown but quality in 

terms of color but it is still low. 
 
Further modification to the DCGAN along with training the network for 3000 epochs resulted in a 
model that seemed to produce some valid results. Figure 6, shows a sample of these generated 
images, note that the network did not generalize well, instead learning only the exemplars in the 
dataset. For example the sword generated in the center is almost identical to one training sprite. 
We plan to address this issue by increasing our dataset and thus variance.  
 



 
Figure 6: Potential overfitting of the limited weapons dataset after modifying network structure. 

Note that this set was randomly selected, the duplicates appeared by chance. 

Website 
Our website is hosted on github.io which provides free static hosting. The site is generated 
using Jekyll with the Grayscale bootstrap Jekyll theme. Currently the textual content is stubbed 
out. However we are using it to serve the compressed dataset for our online network training. 



Next Steps 
We will continue to collect and label sprite from online resources. We believe that the 
combination of more data in addition to developing on our DCGAN will improve on the results 
shown. Regarding our network training, we will continue to develop and tune the comparison 
network to provide its best possible results. Additionally, we will train the architecture on new 
subsets of our data such as entities. Finally, we will implement our conditional DCGAN 
architecture with autoencoder on the same datasets as was used for the comparison network. 

Revised Implementation Plan 
A revised time table is provided below. This revision is due to taking longer to learn Keras, 
develop GAN, and produce initial results. With current understanding and available tools, future 
work should be completed more smoothly. 
 

Date Goal 

Sept. 23 Website started, Project infrastructure started. 

Sept. 26 Proposal submitted. Website is updated. 

~Oct. 20 Keras tutorials complete, basic mockup of DCGAN using MNIST 
handwritten digit dataset. 

~Oct. 28 Initial dataset complete without image manipulation. Sample image set 
recorded for networks. Comparison network model implemented results 
recorded. 

Oct. 29 Team decides to pursue data labeling and collecting more data from online 
sources. 
 
Team decides to attempt conditional GAN after autoencoder step. 
 
Team works on Mid-Term Report. 

Oct. 31 Mid-Term Report submitted. Website is updated. 

Nov. 11 Improvements to DCGAN model such as autoencoder, sample image set 
recorded. Dataset is extended. 

Nov. 18 Conditional GAN is implemented on the autoencoder GAN model. Results 
recorded. 

Nov. 25 Last minute changes are made. Final analysis is performed. Presentation 
write up started. Website results write up started. 



Nov. 30 Website updated with all content. Presentation is complete. 

Dec. 12 Final Presentations. (4:30-4:35) 

Dec. 12 Project Website Submitted. 

Table 1: Important dates for the project, note that the dates before Oct. 29th are approximate. 
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Partner Contribution Breakdown 
Curt Henrichs 

● Wrote rough draft of mid-term report 
● Edited and reviewed rough draft of mid-term report 
● Collected and processed current sprite dataset 
● Modified MNIST GAN to produce environment and item sprites 
● Setup initial version of website using prebuilt theme 

Sayem Wani 
● Edited and reviewed rough draft of mid-term report 
● Developed MNIST GAN 
● Reviewed literature on training GANs 

Saheen Feroz 
● Edited and reviewed rough draft of mid-term report 
● Developed MNIST GAN 
● Reviewed literature on training GANs 


